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1 Preliminaries

Let dHn be the degenerate affine hecke algebra and L(an) = InddHn
Pn

L(a)⊠ . . .⊠L(a). Recall that L(an)
is irreducible.

Definition 1.1. Given M ∈ dHn −mod and a ∈ k let ∆a(M) =generalized a−eigenspace for xn on
M , aka

∆a(M) :=
⊕

a∈kn, an=a

Ma

Lemma 1.2. ∆a : dHn −mod→ dHn−1,1 −mod is an exact functor.

Proof. Because xn commutes with dHn−1,1, it first follows that ∆a(M) will be a dHn−1,1 module and
second, any dHn−1,1 morphism M → N restricts to ∆a(M)→ ∆a(N). ■

Definition 1.3. More generally, define ∆am : dHn −mod → dHn−m,m −mod to be the simultaneous
generalized a−aigenspace of {xk}nk=n−m+1, aka

∆am(M) :=
⊕

a∈kn, an−m+1=...=an=a

Ma

Lemma 1.4.

HomdHn(Indn
n−m,m(N ⊠ L(am)), M) ∼= HomdHn−m,m(N ⊠ L(am), ∆am(M))

Proof. N⊠L(am) is in the block (. . . , a, . . . , a) and so nonzero homomorphisms N⊠L(am)→ Resn
n−m,mM

must land in the (. . . , a, . . . , a) block of Resn
n−m,mM . But this is exactly ∆am(M). ■

Definition 1.5. Given a ∈ k and M ∈ dHn −mod, let

ϵa(M) = max {m ≥ 0 |∆am(M) ̸= 0}

Proposition 1.6. Let m ≥ 0, a ∈ k and N ∈ dHn−mod be irreducible with ϵa(N) = 0 (N
b⃗

= 0 if
bn = a). Set M = Indn+m

n,m N ⊠ L(am). Then

(i) ∆am(M) ∼= N ⊠ L(am) (In particular soc(∆am(M)) is irreducible)

(ii) ∆am(hd(M)) = ∆am(M) and hd(M)(largest semisimple quotient) is irreducible.

(iii) ϵa(hd(M)) = m and all other composition factors L of M have ϵa(L) < m.

Proof. (i) From the unit of the adjunction from Lemma 1.4 we have a nonzero, injective (since N is
simple) map

N ⊠ L(am)→ ∆am(M)
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Now using the shuffle lemma and the fact that when ϵa(N) = 0 there is only one shuffle b ∈ wt(N) and
(a, . . . , a) in which the last m spots are all a, we have that

dimk N ⊠ L(am) = dimk ∆am(M)

and thus they are isomorphic.
(ii) Let hd(M) = M/I. Because ∆am is exact we have the SES

0→ ∆am(I)→ ∆am(M)→ ∆am(hd(M))→ 0 (1)

But since ∆am(M) ∼= N ⊠L(am) is simple it follows that ∆am(I) = 0. Moreover, any composition factor
of ∆am(hd(M)) will be a composition factor of ∆am(M). From Lemma 1.4 we have that

Homn+m(M, M/I) = Homn,m(N ⊠ L(am), ∆am(hd(M)) )

If hd(M) were not simple, then semisimplicity of M/I would give us at least 2 different maps on the
LHS and thus if N ⊠ L(am) appears with mulitplicity 2 as a composition factor of ∆am(hd(M)) and
thus of ∆am(M). But ∆am(M) ∼= N ⊠ L(am) so this is impossible.
We have that ∆am+1(M) = ∆am+1(∆am(M)) = ∆am+1(N ⊠ L(am)) = 0 as ϵa(N) = 0 and thus
ϵa(hd(M)) = m. Eq. (1) shows ∆am(I) = 0 and thus ϵa(L) < m for all other composition factors
L. ■

Lemma 1.7. Let M ∈ dHn −mod be irreducible, a ∈ k. If N ⊠ L(am) is an irreducible submodule of
∆am(M) for some 0 ≤ m ≤ ϵa(M), then ϵa(N) = ϵa(M)−m.

Lemma 1.8. Let M ∈ dHn−mod be irreducible, a ∈ k and ϵ := ϵa(M). Then ∆aϵ(M) is isomorphic
to N ⊠ L(aϵ) for some irreducible N ∈ dHn−ϵ−mod with ϵa(N) = 0.

Proof. Choose any simple submodule N ⊠L(aϵ) ↪→ ∆aϵ(M). Then by Lemma 1.7 (with m = ϵ) we have
that ϵa(N) = 0. By Lemma 1.4 we have a map

Indn
n−ϵ,ϵN ⊠ L(aϵ) ↠ M

which is surjective as M is irreducible by assumption. By exactness of ∆aϵ we then have

∆aϵ(Indn
n−ϵ,ϵN ⊠ L(aϵ)) ↠ ∆aϵ(M)

But by Proposition 1.6 (i), the LHS above is isomorphic to N ⊠ L(aϵ) and thus the isomorphism as
desired. ■

Theorem 1.9. Let M ∈ dHn−mod be irreducible, a ∈ k. Then for any 0 ≤ m ≤ ϵa(M), soc(∆am(M))
is an irreducible dHn−m,m−mod of the form L ⊠ L(am) with ϵa(L) = ϵa(M)−m.

Proof. When m = ϵ this is just the lemma above. Again let ϵ = ϵa(M). Consider an irreducible
summand

L ⊠ L(am) ↪→ soc (∆am(M)) (2)

By Lemma 1.7 we have that ϵa(L) = ϵ−m. Thus taking the xn−m, . . . , xn−ϵ+1 generalized a−eigenspace
of both sides of Eq. (2) we obtain the inclusion

∆ϵ−m(L) ⊠ L(am) ↪→ ∆aϵ(M)
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Note that ∆ϵ−m(L) is simple by ?? and keeping track of the submodule structure the LHS is a
dHn−m−(ϵ−m),ϵ−m,m−module and thus we have the inclusion of an irreducible

∆ϵ−m(L) ⊠ L(am) ↪→ Resn−ϵ,ϵ
n−ϵ,ϵ−m,m∆aϵ(M)

as submodules. But from Lemma 1.8 we have that ∆aϵ(M) = N⊠L(aϵ). We know that soc
(
Resϵ

ϵ−m,mL(aϵ)
)

=
L(aϵ−m) ⊠ L(am) from the previous lecture and thus we have that

soc
(
Resn−ϵ,ϵ

n−ϵ,ϵ−m,m∆aϵ(M)
)

= N ⊠ L(aϵ−m) ⊠ L(am)

is simple and thus ∆ϵ−m(L) is unique and thus L is unique1. ■

2 Crystal Operators

Definition 2.1. Let M ∈ dHn−mod be irreducible, define

ẽa(M) = soc(ea(M)), f̃a(M) = hd
(
Indn+1

n,1 M ⊠ L(a)
)

where ea(M) = Resn−1,1
n−1 ◦∆a(M).

Remark. In dHΛ0
n := dHn/(x1) = k[Sn] we have that xk 7→ Jk where Jk is the k−th Jucys–Murphy

element. Then ea, “fa” as defined above has a very nice decription when restricted to the Specht
modules, ea removes a box of content a while “fa” adds a box of content a.

Remark. “fa” is in quotations above because it’s not defined.

Lemma 2.2. ẽa : dHn−irr → dHn−1−irr and f̃a : dHn−irr → dHn+1−irr

Proof. We just show the case ẽa. Let L ↪→ ea(M) be an irreducible submodule. We need to show
L is unique. First note that as a set, ea(M) = ∆a(M) ⊂ M . We claim that L is in fact a dHn−1,1
submodule, aka stable under the action of xn. Note

(1) z = x1 + . . . + xn is central in dHn it acts by a scalar on the irreducible dHn−module M and thus
on any subset L.

(2) z′ = x1 + . . . + xn is central in dHn−1 it acts by a scalar on the irreducible dHn−1−module L.

(3) Therefore xn = z − z′ acts by a scalar on L.

(4) L ⊂ ∆a(M) as a set, so L is a subset of the generalized a−eigenspace for xn and since xn acts by
a scalar that scalar must be a.

(5) Therefore as a dHn−1,1 module L = L ⊠ L(a) ⊂ ∆a(M). This is irreducible and thus contributes
to the socle and by Theorem 1.9 the socle is irreducible so L is unique.

■

Proposition 2.3. Let M ∈ dHn−mod be irreducible, a ∈ k. Then

(a) soc (∆amM) ∼= (ẽa
m(M)) ⊠ L(am).

1The functors ∆ak , Res are all restriction functors so the inclusion of another L ⊠ L(am) would genuinely produce a
different factor.
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(b) hd
(
Indn+m

n,m M ⊠ L(am)
)
∼= f̃a

m
(M).

Proof. (a) If m > ϵa(M) then both parts in the equality are 0. So let m ≤ ϵa(M) [TODO] ■

Lemma 2.4 (Crystal). Let A ∈ dHn−mod and B ∈ dHn+1 be irreducible modules and a ∈ k. Then
f̃a(A) = B ⇐⇒ ẽa(B) = A.

Corollary 2.5. Let M, N ∈ dHn−mod be irreducible. Then ẽa(M) ∼= ẽa(N) ⇐⇒ M ∼= N assuming
ϵa(M), ϵa(N) > 0.

Proof. =⇒ Suppose ẽa(M) ∼= ẽa(N). By Lemma 2.4 with B = M, A = ẽa(N) we have that
f̃a (ẽa(N)) = M . But we can apply Lemma 2.4 again with B = N, A = ẽa(M) to obtain f̃a (ẽa(M)) = N

and thus M ∼= N as desired. ■

Theorem 1 (Vazirani)
The map ch : K0(dHn −mod)→ K0(Pn −mod) is injective where ch(M) =

[
Resn

Pn
M

]
.

Proof. It suffices to show that {ch(L)}L irr is L.I. over Z. Proceed by induction on n. Suppose we have∑
L

cL ch(L) = 0 cL ∈ Z (3)

for some simple L ∈ dHn−mod. Choose a ∈ k, we will show by downward induction that cL = 0 if
ϵa(L) = k where k = n, . . . , 1. Doing this for all a will then complete the proof. Because ∆an is exact,
it descends to a map K0(Pn −mod)→ K0(Pn −mod) and commutes with Res. The only simple in the
block (a, . . . , a)2 is L(an) and thus applying ∆an to Eq. (3), we see that the coefficient of chL(an) is
zero completing the base case k = n.

Now suppose that cL = 0 for all L with ϵa(L) > k, applying ∆ak to Eq. (3) we have∑
L s.t. ϵa(L)=k

cL ch(∆ak(L)) = 0 (4)

because cL = 0 if ϵa(L) > k by induction and ∆ak(L) = 0 if ϵa(L) < k. Since ϵa(L) = k Lemma 1.8
tells us that ∆ak(L) is simple and thus equal to it’s socle. From Proposition 2.3 we then see that

∆ak(L) ∼=
(
ẽa

k(L)
)
⊠ L(ak)

and thus we can factor out a [L(ak)] from Eq. (4) to obtain∑
L s.t. ϵa(L)=k

cL ch(ẽa
k(L)) = 0

We know that ẽa
k(L) ∈ dHn−k−irr so by induction all the cL = 0 assuming that

{
ẽa

k(L)
}

are all
distinct. But this is exactly what Corollary 2.5 tells us so we are done. ■

2n times
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3 Misc Results

Proposition 3.1. Let M ∈ dHn −mod be irreducible, then soc
(
Resn

n−1M
)

is multiplicity-free.

Proof. We have that Resn
n−1M =

⊕
a∈k

ea(M) with all but finitely many summands zero and thus

soc
(
Resn

n−1M
)

=
⊕
a∈k

soc(ea(M)) =
⊕
a∈k

ẽa(M)

where we have used tha soc commutes with direct sum (see [Modular Representation Theory of Finite
Groups, Exercise 24.5] by Lassueur, Farrell). Alternatively in this case each irreducible is contained in
a unique block so must be contained inside soc(ea(M)) for some a and thus soc commutes with the
direct sum above.

Now we know ẽa(M) is irreducible and for different a ∈ k, ẽa(M) are in different blocks and thus can’t
be isomorphic to each other and thus soc

(
Resn

n−1M
)

is multiplicity free as desired. ■

4 Categorification of U(ŝlp)

Definition 4.1. Given k let I := Z · I ⊂ k. As a set I = Z/pZ where p = chark.

Definition 4.2. M ∈ dHn−mod is called integral if all the eigenvalues of {xi}ni=1 are in I. Let
dHn −modI be the full subcategory of dHn−mod consisting of all integral modules.

Theorem 2
Let K0(dHk) =

⊕
n≥0

K0(dHn/k −modI) and let K⊕(dHk) =
⊕
n≥0

K⊕(dHn/k − pmodI). Then there

are isomorphisms of Hopf algebras

UZ(ŝlp
+

) ∼−→ K⊕(dHk) U∗
Z(ŝlp

+
) ∼−→ K0(dHk)

where p = chark, s.t.

CB
ŝlp
←→ {[P ]P indec} DCB

ŝlp
←→ {[L]L irr}

and Ẽa, F̃a ←→ ẽa, f̃a.
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