Categorified Crystal Operators on $U\left(\widehat{\mathfrak{s q}_{p}}\right)$

Cailan Li

May 3rd, 2023

1 Preliminaries

Let $d \mathcal{H}_{n}$ be the degenerate affine hecke algebra and $L\left(a^{n}\right)=\operatorname{Ind}_{P_{n}}^{d \mathcal{H}_{n}} L(a) \boxtimes \ldots \boxtimes L(a)$. Recall that $L\left(a^{n}\right)$ is irreducible.

Definition 1.1. Given $M \in d \mathcal{H}_{n}-\bmod$ and $a \in \mathbb{k}$ let $\Delta_{a}(M)=$ generalized a-eigenspace for x_{n} on M, aka

$$
\Delta_{a}(M):=\bigoplus_{\underline{a} \in \mathbb{R}^{n}, a_{n}=a} M_{\underline{a}}
$$

Lemma 1.2. $\Delta_{a}: d \mathcal{H}_{n}-\bmod \rightarrow d \mathcal{H}_{n-1,1}-\bmod$ is an exact functor.
Proof. Because x_{n} commutes with $d \mathcal{H}_{n-1,1}$, it first follows that $\Delta_{a}(M)$ will be a $d \mathcal{H}_{n-1,1}$ module and second, any $d \mathcal{H}_{n-1,1}$ morphism $M \rightarrow N$ restricts to $\Delta_{a}(M) \rightarrow \Delta_{a}(N)$.

Definition 1.3. More generally, define $\Delta_{a^{m}}: d \mathcal{H}_{n}-\bmod \rightarrow d \mathcal{H}_{n-m, m}-\bmod$ to be the simultaneous generalized a-aigenspace of $\left\{x_{k}\right\}_{k=n-m+1}^{n}$, aka

$$
\Delta_{a^{m}}(M):=\bigoplus_{\underline{a} \in \mathbb{k}^{n}, a_{n-m+1}=\ldots=a_{n}=a} M_{\underline{a}}
$$

Lemma 1.4.

$$
\operatorname{Hom}_{d \mathcal{H}_{n}}\left(\operatorname{Ind}_{n-m, m}^{n}\left(N \boxtimes L\left(a^{m}\right)\right), M\right) \cong \operatorname{Hom}_{d \mathcal{H}_{n-m, m}}\left(N \boxtimes L\left(a^{m}\right), \Delta_{a^{m}}(M)\right)
$$

Proof. $N \boxtimes L\left(a^{m}\right)$ is in the block (\ldots, a, \ldots, a) and so nonzero homomorphisms $N \boxtimes L\left(a^{m}\right) \rightarrow \operatorname{Res}_{n-m, m}^{n} M$ must land in the (\ldots, a, \ldots, a) block of $\operatorname{Res}_{n-m, m}^{n} M$. But this is exactly $\Delta_{a^{m}}(M)$.

Definition 1.5. Given $a \in \mathbb{k}$ and $M \in d \mathcal{H}_{n}-\bmod$, let

$$
\epsilon_{a}(M)=\max \left\{m \geq 0 \mid \Delta_{a^{m}}(M) \neq 0\right\}
$$

Proposition 1.6. Let $m \geq 0, a \in \mathbb{k}$ and $N \in d \mathcal{H}_{n}-\bmod$ be irreducible with $\epsilon_{a}(N)=0\left(N_{\vec{b}}=0\right.$ if $\left.b_{n}=a\right)$. Set $M=\operatorname{Ind}_{n, m}^{n+m} N \boxtimes L\left(a^{m}\right)$. Then
(i) $\Delta_{a^{m}}(M) \cong N \boxtimes L\left(a^{m}\right)$ (In particular $\operatorname{soc}\left(\Delta_{a^{m}}(M)\right)$ is irreducible)
(ii) $\Delta_{a^{m}}(\mathrm{hd}(M))=\Delta_{a^{m}}(M)$ and $\operatorname{hd}(M)$ (largest semisimple quotient) is irreducible.
(iii) $\epsilon_{a}(\operatorname{hd}(M))=m$ and all other composition factors L of M have $\epsilon_{a}(L)<m$.

Proof. (i) From the unit of the adjunction from Lemma 1.4 we have a nonzero, injective (since N is simple) map

$$
N \boxtimes L\left(a^{m}\right) \rightarrow \Delta_{a^{m}}(M)
$$

Now using the shuffle lemma and the fact that when $\epsilon_{a}(N)=0$ there is only one shuffle $\underline{b} \in \mathrm{wt}(N)$ and (a, \ldots, a) in which the last m spots are all a, we have that

$$
\operatorname{dim}_{\mathbb{k}} N \boxtimes L\left(a^{m}\right)=\operatorname{dim}_{\mathbb{k}} \Delta_{a^{m}}(M)
$$

and thus they are isomorphic.
(ii) Let $\operatorname{hd}(M)=M / I$. Because $\Delta_{a^{m}}$ is exact we have the SES

$$
\begin{equation*}
0 \rightarrow \Delta_{a^{m}}(I) \rightarrow \Delta_{a^{m}}(M) \rightarrow \Delta_{a^{m}}(\operatorname{hd}(M)) \rightarrow 0 \tag{1}
\end{equation*}
$$

But since $\Delta_{a^{m}}(M) \cong N \boxtimes L\left(a^{m}\right)$ is simple it follows that $\Delta_{a^{m}}(I)=0$. Moreover, any composition factor of $\Delta_{a^{m}}(\operatorname{hd}(M))$ will be a composition factor of $\Delta_{a^{m}}(M)$. From Lemma 1.4 we have that

$$
\operatorname{Hom}_{n+m}(M, M / I)=\operatorname{Hom}_{n, m}\left(N \boxtimes L\left(a^{m}\right), \Delta_{a^{m}}(\operatorname{hd}(M))\right)
$$

If $\operatorname{hd}(M)$ were not simple, then semisimplicity of M / I would give us at least 2 different maps on the LHS and thus if $N \boxtimes L\left(a^{m}\right)$ appears with mulitplicity 2 as a composition factor of $\Delta_{a^{m}}(\mathrm{hd}(M))$ and thus of $\Delta_{a^{m}}(M)$. But $\Delta_{a^{m}}(M) \cong N \boxtimes L\left(a^{m}\right)$ so this is impossible.

We have that $\Delta_{a^{m+1}}(M)=\Delta_{a^{m+1}}\left(\Delta_{a^{m}}(M)\right)=\Delta_{a^{m+1}}\left(N \boxtimes L\left(a^{m}\right)\right)=0$ as $\epsilon_{a}(N)=0$ and thus $\epsilon_{a}(\mathrm{hd}(M))=m$. Eq. (1) shows $\Delta_{a^{m}}(I)=0$ and thus $\epsilon_{a}(L)<m$ for all other composition factors L.

Lemma 1.7. Let $M \in d \mathcal{H}_{n}-\bmod$ be irreducible, $a \in \mathbb{k}$. If $N \boxtimes L\left(a^{m}\right)$ is an irreducible submodule of $\Delta_{a^{m}}(M)$ for some $0 \leq m \leq \epsilon_{a}(M)$, then $\epsilon_{a}(N)=\epsilon_{a}(M)-m$.

Lemma 1.8. Let $M \in d \mathcal{H}_{n}-\bmod$ be irreducible, $a \in \mathbb{k}$ and $\epsilon:=\epsilon_{a}(M)$. Then $\Delta_{a^{\epsilon}}(M)$ is isomorphic to $N \boxtimes L\left(a^{\epsilon}\right)$ for some irreducible $N \in d \mathcal{H}_{n-\epsilon}-\bmod$ with $\epsilon_{a}(N)=0$.

Proof. Choose any simple submodule $N \boxtimes L\left(a^{\epsilon}\right) \hookrightarrow \Delta_{a^{\epsilon}}(M)$. Then by Lemma 1.7 (with $m=\epsilon$) we have that $\epsilon_{a}(N)=0$. By Lemma 1.4 we have a map

$$
\operatorname{Ind}_{n-\epsilon, \epsilon}^{n} N \boxtimes L\left(a^{\epsilon}\right) \rightarrow M
$$

which is surjective as M is irreducible by assumption. By exactness of $\Delta_{a^{\epsilon}}$ we then have

$$
\Delta_{a^{\epsilon}}\left(\operatorname{Ind}_{n-\epsilon, \epsilon}^{n} N \boxtimes L\left(a^{\epsilon}\right)\right) \rightarrow \Delta_{a^{\epsilon}}(M)
$$

But by Proposition $1.6(i)$, the LHS above is isomorphic to $N \boxtimes L\left(a^{\epsilon}\right)$ and thus the isomorphism as desired.

Theorem 1.9. Let $M \in d \mathcal{H}_{n}-\bmod$ be irreducible, $a \in \mathbb{k}$. Then for any $0 \leq m \leq \epsilon_{a}(M), \operatorname{soc}\left(\Delta_{a^{m}}(M)\right)$ is an irreducible $d \mathcal{H}_{n-m, m}-\bmod$ of the form $L \boxtimes L\left(a^{m}\right)$ with $\epsilon_{a}(L)=\epsilon_{a}(M)-m$.

Proof. When $m=\epsilon$ this is just the lemma above. Again let $\epsilon=\epsilon_{a}(M)$. Consider an irreducible summand

$$
\begin{equation*}
L \boxtimes L\left(a^{m}\right) \hookrightarrow \operatorname{soc}\left(\Delta_{a^{m}}(M)\right) \tag{2}
\end{equation*}
$$

By Lemma 1.7 we have that $\epsilon_{a}(L)=\epsilon-m$. Thus taking the $x_{n-m}, \ldots, x_{n-\epsilon+1}$ generalized a-eigenspace of both sides of Eq. (2) we obtain the inclusion

$$
\Delta_{\epsilon-m}(L) \boxtimes L\left(a^{m}\right) \hookrightarrow \Delta_{a^{\epsilon}}(M)
$$

Note that $\Delta_{\epsilon-m}(L)$ is simple by ?? and keeping track of the submodule structure the LHS is a $d \mathcal{H}_{n-m-(\epsilon-m), \epsilon-m, m}-$ module and thus we have the inclusion of an irreducible

$$
\Delta_{\epsilon-m}(L) \boxtimes L\left(a^{m}\right) \hookrightarrow \operatorname{Res}_{n-\epsilon, \epsilon-m, m}^{n-\epsilon \epsilon} \Delta_{a^{\epsilon}}(M)
$$

as submodules. But from Lemma 1.8 we have that $\Delta_{a^{\epsilon}}(M)=N \boxtimes L\left(a^{\epsilon}\right)$. We know that soc $\left(\operatorname{Res}_{\epsilon-m, m}^{\epsilon} L\left(a^{\epsilon}\right)\right)=$ $L\left(a^{\epsilon-m}\right) \boxtimes L\left(a^{m}\right)$ from the previous lecture and thus we have that

$$
\operatorname{soc}\left(\operatorname{Res}_{n-\epsilon, \epsilon-m, m}^{n-\epsilon, \epsilon} \Delta_{a^{\epsilon}}(M)\right)=N \boxtimes L\left(a^{\epsilon-m}\right) \boxtimes L\left(a^{m}\right)
$$

is simple and thus $\Delta_{\epsilon-m}(L)$ is unique and thus L is unique ${ }^{1}$.

2 Crystal Operators

Definition 2.1. Let $M \in d \mathcal{H}_{n}$-mod be irreducible, define

$$
\widetilde{e_{a}}(M)=\operatorname{soc}\left(e_{a}(M)\right), \quad \widetilde{f_{a}}(M)=\operatorname{hd}\left(\operatorname{Ind}_{n, 1}^{n+1} M \boxtimes L(a)\right)
$$

where $e_{a}(M)=\operatorname{Res}_{n-1}^{n-1,1} \circ \Delta_{a}(M)$.
Remark. In $d \mathcal{H}_{n}^{\Lambda_{0}}:=d \mathcal{H}_{n} /\left(x_{1}\right)=\mathbb{k}\left[S_{n}\right]$ we have that $x_{k} \mapsto J_{k}$ where J_{k} is the k-th Jucys-Murphy element. Then $e_{a}, " f_{a}$ " as defined above has a very nice decription when restricted to the Specht modules, e_{a} removes a box of content a while " f_{a} " adds a box of content a.

Remark. " f_{a} " is in quotations above because it's not defined.
Lemma 2.2. $\widetilde{e_{a}}: d \mathcal{H}_{n}-$ irr $\rightarrow d \mathcal{H}_{n-1}-$ irr and $\widetilde{f_{a}}: d \mathcal{H}_{n}-$ irr $\rightarrow d \mathcal{H}_{n+1}-$ irr
Proof. We just show the case $\widetilde{e_{a}}$. Let $L \hookrightarrow e_{a}(M)$ be an irreducible submodule. We need to show L is unique. First note that as a set, $e_{a}(M)=\Delta_{a}(M) \subset M$. We claim that L is in fact a $d \mathcal{H}_{n-1,1}$ submodule, aka stable under the action of x_{n}. Note
(1) $z=x_{1}+\ldots+x_{n}$ is central in $d \mathcal{H}_{n}$ it acts by a scalar on the irreducible $d \mathcal{H}_{n}-$ module M and thus on any subset L.
(2) $z^{\prime}=x_{1}+\ldots+x_{n}$ is central in $d \mathcal{H}_{n-1}$ it acts by a scalar on the irreducible $d \mathcal{H}_{n-1}-$ module L.
(3) Therefore $x_{n}=z-z^{\prime}$ acts by a scalar on L.
(4) $L \subset \Delta_{a}(M)$ as a set, so L is a subset of the generalized a-eigenspace for x_{n} and since x_{n} acts by a scalar that scalar must be a.
(5) Therefore as a $d \mathcal{H}_{n-1,1}$ module $L=L \boxtimes L(a) \subset \Delta_{a}(M)$. This is irreducible and thus contributes to the socle and by Theorem 1.9 the socle is irreducible so L is unique.

Proposition 2.3. Let $M \in d \mathcal{H}_{n}-\bmod$ be irreducible, $a \in \mathbb{k}$. Then
(a) $\operatorname{soc}\left(\Delta_{a^{m}} M\right) \cong\left(\widetilde{e_{a}}{ }^{m}(M)\right) \boxtimes L\left(a^{m}\right)$.

[^0](b) hd $\left(\operatorname{Ind}_{n, m}^{n+m} M \boxtimes L\left(a^{m}\right)\right) \cong{\widetilde{f_{a}}}^{m}(M)$.

Proof. (a) If $m>\epsilon_{a}(M)$ then both parts in the equality are 0 . So let $m \leq \epsilon_{a}(M)$ [TODO]
 $\widetilde{f_{a}}(A)=B \Longleftrightarrow \widetilde{e_{a}}(B)=A$.

Corollary 2.5. Let $M, N \in d \mathcal{H}_{n}-\bmod$ be irreducible. Then $\widetilde{e_{a}}(M) \cong \widetilde{e_{a}}(N) \Longleftrightarrow M \cong N$ assuming $\epsilon_{a}(M), \epsilon_{a}(N)>0$.

Proof. \Longrightarrow Suppose $\widetilde{e_{a}}(M) \cong \widetilde{e_{a}}(N)$. By Lemma 2.4 with $B=M, A=\widetilde{e_{a}}(N)$ we have that $\widetilde{f_{a}}\left(\widetilde{e_{a}}(N)\right)=M$. But we can apply Lemma 2.4 again with $B=N, A=\widetilde{e_{a}}(M)$ to obtain $\widetilde{f_{a}}\left(\widetilde{e_{a}}(M)\right)=N$ and thus $M \cong N$ as desired.

Theorem 1 (Vazirani)
The map ch : $K_{0}\left(d \mathcal{H}_{n}-\bmod \right) \rightarrow K_{0}\left(P_{n}-\bmod \right)$ is injective where $\operatorname{ch}(M)=\left[\operatorname{Res}_{P_{n}}^{n} M\right]$.

Proof. It suffices to show that $\{\operatorname{ch}(L)\}_{L \text { irr }}$ is L.I. over \mathbb{Z}. Proceed by induction on n. Suppose we have

$$
\begin{equation*}
\sum_{L} c_{L} \operatorname{ch}(L)=0 \quad c_{L} \in \mathbb{Z} \tag{3}
\end{equation*}
$$

for some simple $L \in d \mathcal{H}_{n}-\bmod$. Choose $a \in \mathbb{k}$, we will show by downward induction that $c_{L}=0$ if $\epsilon_{a}(L)=k$ where $k=n, \ldots, 1$. Doing this for all a will then complete the proof. Because $\Delta_{a^{n}}$ is exact, it descends to a map $K_{0}\left(P_{n}-\bmod \right) \rightarrow K_{0}\left(P_{n}-\bmod \right)$ and commutes with Res. The only simple in the block $(a, \ldots, a)^{2}$ is $L\left(a^{n}\right)$ and thus applying $\Delta_{a^{n}}$ to Eq. (3), we see that the coefficient of $\operatorname{ch} L\left(a^{n}\right)$ is zero completing the base case $k=n$.

Now suppose that $c_{L}=0$ for all L with $\epsilon_{a}(L)>k$, applying $\Delta_{a^{k}}$ to Eq. (3) we have

$$
\begin{equation*}
\sum_{L \text { s.t. } \epsilon_{a}(L)=k} c_{L} \operatorname{ch}\left(\Delta_{a^{k}}(L)\right)=0 \tag{4}
\end{equation*}
$$

because $c_{L}=0$ if $\epsilon_{a}(L)>k$ by induction and $\Delta_{a^{k}}(L)=0$ if $\epsilon_{a}(L)<k$. Since $\epsilon_{a}(L)=k$ Lemma 1.8 tells us that $\Delta_{a^{k}}(L)$ is simple and thus equal to it's socle. From Proposition 2.3 we then see that

$$
\Delta_{a^{k}}(L) \cong\left({\widetilde{e_{a}}}^{k}(L)\right) \boxtimes L\left(a^{k}\right)
$$

and thus we can factor out a $\left[L\left(a^{k}\right)\right]$ from Eq. (4) to obtain

$$
\sum_{L \text { s.t. } \epsilon_{a}(L)=k} c_{L} \operatorname{ch}\left(\widetilde{e_{a}}(L)\right)=0
$$

We know that ${\widetilde{e_{a}}}^{k}(L) \in d \mathcal{H}_{n-k}$-irr so by induction all the $c_{L}=0$ assuming that $\left\{{\widetilde{e_{a}}}^{k}(L)\right\}$ are all distinct. But this is exactly what Corollary 2.5 tells us so we are done.

[^1]
3 Misc Results

Proposition 3.1. Let $M \in d \mathcal{H}_{n}-\bmod$ be irreducible, then $\operatorname{soc}\left(\operatorname{Res}_{n-1}^{n} M\right)$ is multiplicity-free.
Proof. We have that $\operatorname{Res}_{n-1}^{n} M=\bigoplus_{a \in \mathbb{k}} e_{a}(M)$ with all but finitely many summands zero and thus

$$
\operatorname{soc}\left(\operatorname{Res}_{n-1}^{n} M\right)=\bigoplus_{a \in \mathbb{k}} \operatorname{soc}\left(e_{a}(M)\right)=\bigoplus_{a \in \mathbb{k}} \widetilde{e_{a}}(M)
$$

where we have used tha soc commutes with direct sum (see [Modular Representation Theory of Finite Groups, Exercise 24.5] by Lassueur, Farrell). Alternatively in this case each irreducible is contained in a unique block so must be contained inside $\operatorname{soc}\left(e_{a}(M)\right)$ for some a and thus soc commutes with the direct sum above.

Now we know $\widetilde{e_{a}}(M)$ is irreducible and for different $a \in \mathbb{k}, \widetilde{e_{a}}(M)$ are in different blocks and thus can't be isomorphic to each other and thus $\operatorname{soc}\left(\operatorname{Res}_{n-1}^{n} M\right)$ is multiplicity free as desired.

4 Categorification of $U\left(\widehat{\mathfrak{s r}}_{p}\right)$

Definition 4.1. Given \mathbb{k} let $I:=\mathbb{Z} \cdot I \subset \mathbb{k}$. As a set $I=\mathbb{Z} / p \mathbb{Z}$ where $p=$ char \mathbb{k}.
Definition 4.2. $M \in d \mathcal{H}_{n}-$ mod is called integral if all the eigenvalues of $\left\{x_{i}\right\}_{i=1}^{n}$ are in I. Let $d \mathcal{H}_{n}-\bmod _{I}$ be the full subcategory of $d \mathcal{H}_{n}-$ mod consisting of all integral modules.

Theorem 2

Let $K_{0}\left(d \mathcal{H}_{\mathbb{k}}\right)=\bigoplus_{n \geq 0} K_{0}\left(d \mathcal{H}_{n} / \mathbb{k}-\bmod _{I}\right)$ and let $K_{\oplus}\left(d \mathcal{H}_{\mathbb{k}}\right)=\bigoplus_{n \geq 0} K_{\oplus}\left(d \mathcal{H}_{n} / \mathbb{k}-\operatorname{pmod}_{I}\right)$. Then there are isomorphisms of Hopf algebras

$$
U_{\mathbb{Z}}\left(\widehat{\mathfrak{s}}_{p}^{+}\right) \xrightarrow{\sim} K_{\oplus}\left(d \mathcal{H}_{\mathbb{k}}\right) \quad U_{\mathbb{Z}}^{*}\left(\widehat{\mathfrak{s}}_{p}^{+}\right) \xrightarrow{\sim} K_{0}\left(d \mathcal{H}_{\mathbb{k}}\right)
$$

where $p=$ char \mathbb{k}, s.t.

$$
\mathrm{CB}_{\widehat{\mathfrak{s l}}_{p}} \longleftrightarrow\left\{[P]_{P \text { indec }}\right\} \quad \mathrm{DCB}_{\widehat{\mathfrak{s l}_{p}}} \longleftrightarrow\left\{[L]_{L \text { irr }}\right\}
$$

and $\widetilde{E_{a}}, \widetilde{F_{a}} \longleftrightarrow \widetilde{e_{a}}, \widetilde{f_{a}}$.

[^0]: ${ }^{1}$ The functors $\Delta_{a^{k}}$, Res are all restriction functors so the inclusion of another $L \boxtimes L\left(a^{m}\right)$ would genuinely produce a different factor.

[^1]: ${ }^{2} n$ times

